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Deciphering the modular organization of metabolic networks and
understanding how modularity evolves have attracted tremen-
dous interest in recent years. Here, we present a comprehensive
large scale characterization of modularity across the bacterial tree
of life, systematically quantifying the modularity of the metabolic
networks of >300 bacterial species. Three main determinants of
metabolic network modularity are identified. First, network size is
an important topological determinant of network modularity.
Second, several environmental factors influence network modu-
larity, with endosymbionts and mammal-specific pathogens hav-
ing lower modularity scores than bacterial species that occupy a
wider range of niches. Moreover, even among the pathogens,
those that alternate between two distinct niches, such as insect
and mammal, tend to have relatively high metabolic network
modularity. Third, horizontal gene transfer is an important force
that contributes significantly to metabolic modularity. We addi-
tionally reconstruct the metabolic network of ancestral bacterial
species and examine the evolution of modularity across the tree of
life. This reveals a trend of modularity decrease from ancestors to
descendants that is likely the outcome of niche specialization and
the incorporation of peripheral metabolic reactions.

horizontal gene transfer � lateral gene transfer � systems biology �
bacterial evolution � network modules

Modularity is considered to be one of the main organizing
principles of biological networks (1, 2). A biological

network module consists of a set of elements (e.g., proteins/
reactions) that form a coherent structural subsystem and have a
distinct function. Several studies have explored the role of
modularity and network organization in various protein-
interaction and regulatory cellular networks (3–10). Focusing
specifically on modularity in metabolic networks (which is also
the subject of this article), the metabolic networks of 43 distinct
organisms were shown to be organized in many small, highly
connected topologic modules that hierarchically combine into
larger units (11). The functional and evolutionary modularity of
the human metabolic network was also investigated from a
topological perspective by using network decomposition (12).
The network was shown to be organized in a highly modular way
into basic core metabolism modules and peripheral modules that
have specialized functions and evolve at a faster rate.

Considering the evolution of modularity, two major hypoth-
eses have been proposed: the ‘‘evolution of evolvability’’ and the
congruence principle (13). The first posits that there is positive
selection favoring modularity because it enhances evolvability by
enabling evolutionary changes to take place in confined modules
while preserving global cellular functions (14, 15). The second
maintains that, although modularity is not directly selected for,
there is nevertheless an evolutionary congruence between mod-
ularity and other directly selectable properties. Such properties
may include acceleration of gene clustering due to horizontal
gene transfer (HGT) (in accordance with the selfish-operon
theory) (16), the minimization of pleiotropic effects (17), and
adaptation to new environments (18, 19). Indeed, a recent study

of 117 bacterial metabolic networks (20) has found that the level
of variability of the environment in which a bacterial species
resides is positively correlated with its modularity, supporting the
hypothesis that environmental variability promotes modularity.
Furthermore, modules formed in metabolic networks of organ-
isms living in a variable environment were found to be more
functionally coherent than modules formed in organisms living
in constant environments (20).

As briefly reviewed above, several studies have focused on
exploring various aspects of the modular organization of meta-
bolic networks and understanding its evolution. Here, we per-
form a comprehensive study of metabolic modularity from
numerous angles, tracing its evolution on a large scale. To this
end, we revisit the relation between metabolic modularity and
different habitats, considerably extending the number of ana-
lyzed bacterial species and the number of environmental prop-
erties examined. We go beyond environmental determinants and
study the role of several topological network characteristics in
modularity and the role of HGT as a putative central determi-
nant of modularity. We further directly investigate the evolution
of modularity across the tree of life. This is done by employing
a phylogenetic reconstruction algorithm to infer ancestral met-
abolic networks in a pertaining bacterial phylogenetic tree and
tracing the evolution of modularity across an evolutionary time
scale. Overall, our analysis is applied to a large set of 325
reconstructed bacterial metabolic networks (of which 138 appear
on the phylogenetic tree), offering insights concerning the forces
that have shaped the modularity of metabolic networks since the
dawn of bacterial life.

Results
We reconstructed the metabolic networks of 325 bacteria from
their genome sequences [supporting information (SI) Dataset
S1], of which 138 could be placed on a well established tree of
life (21) (Fig. 1). We then quantified the modularity of the
network of each species by using Newman’s algorithm (Methods).
Subsequently, we used a phylogenetic reconstruction algorithm
to infer the ancestral metabolic networks across the tree of life
and quantify their modularity in a similar manner (Methods). The
results of this analysis, assigning modularity scores to 138
contemporary metabolic networks and to 137 ancestral ones, are
displayed in Fig. 1.

Because genetic relatedness between organisms implies a
certain degree of metabolic similarity, we tested to what extent
phylogenetically related organisms have similar modularity
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scores. The correlation between the difference in modularity
scores of species and their distance across the phylogenetic tree
(Methods) is 0.148 (P � 10�300, Spearman rank correlation)
[comparable with the correlation of 0.1 but markedly less
significant (P � 10�4), reported in ref. 20]. Given the moderate
level of this overall correlation, it is instructive to examine a few
specific cases, where different phylogenetic-modularity similar-
ity patterns emerge. The class of Gammaproteobacteria dem-
onstrates an example where modularity closely follows phyloge-
netic distance; different strains of Yersinia pestis have similar
modularity values [perhaps reflecting their relatively recent
emergence as a species �20, 000 years ago (22)]. The variation

in modularity increases gradually, first within the family Enter-
obacteriaceae (including some highly reduced networks of oblig-
atory endosymbionts) and then through the class of Gamma-
proteobacteria to the phylum Proteobacteria (Fig. 2 and Fig. S1).
Obviously, habitat variability may also increase as larger classes
are examined, so phylogenetic proximity probably involves both
genetic and environmental similarities.

Other cases, however, may involve substantial variation among
strains of the same species. An interesting example involves two
different strains of Bacteroides fragilis: although having meta-
bolic networks of highly similar size and content (Dataset S1),
these strains have markedly different modularity scores—strain

Fig. 1. Modularity scores of bacterial metabolic networks across the tree of life of Ciccarelli et al. (21). The color scale indicates the range of modularity scores.
Modularity scores are presented for both the 138 current species and 137 ancestral networks.
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YCH46 having a considerably larger modularity score
(0.872782) than strain NCTC9343 (0.845655). Such divergence
of modularity scores across closely related strains is likely to
occur because of the loss of just very few central reactions,
fragmenting the metabolic network and consequently altering
modularity scores in a considerable manner. This hypothesis was
examined by removing the three most central reactions (DNA
(cytosine-5-)-methyltransferase, 5-formyltetrahydrofolate cyclo-
ligase and glutamine-fructose-6-phosphate transaminase) in
Bacteroides fragilis YCH46 that are absent from B. fragilis
NCTC9343. The modularity score of the network obtained after
the removal of just these three central reactions of YCH46 was
0.846176, a very similar score to that of NCTC9343. The larger
variance in modularity scores emanating from the loss of central
reactions (compared with the loss of more peripheral reactions)
was validated through simulations, where the effect of deleting
reactions on network modularity was examined as a function of
the centrality of these reactions (Methods and Fig. S2). Clearly,
such loss of central reactions that affects major metabolic
functions is probably detrimental and hence very rare. However,
host-associated pathogens or commensals like B. fragilis are
more likely to survive such loss because of the abundance of
many metabolites in their growth environment. Reassuringly,
one may note that such variation in modularity among strains is
probably not just a result of varying annotation practices that bias
the Kyoto Encyclopedia of Genes and Genomes (KEGG) data;
this is exemplified by the genome of Agrobacterium tumefaciens
that was sequenced and annotated by two independent consor-
tia, but its different KEGG versions still show very similar
modularity scores, as one would expect in this case.

We next measured the correlation between different topolog-
ical network properties and their modularity scores. One finding
is an overall correlation between the size of the network (the
number of enzymes it contains) and its modularity (r � 0.3151,
P � 7�10�9, Spearman rank-correlation test, Fig. 3a). This test is
valid because the modularity score of Newman used here is
normalized for network size and is thus unbiased (23). However,
this overall correlation is mainly derived from the differences
between the smallest-size networks to the rest of the networks
(Fig. 3b). Namely, the correlation resembles a saturation curve
and networks of sizes larger than 109 nodes essentially do not
differ in their modularity scores in a statistically significant

manner. Additionally, we find a significant correlation between
modularity and mean nodes (reactions) degree (r � 0.1223, P �
0.027, Spearman rank correlation) and between modularity and
network centrality (r � 0.2079, P � 2�10�4, Spearman rank
correlation). However, a partial correlation test of the contri-
bution of these topological characteristics to modularity, given
network size, results in the absence of any significant marginal
contribution. In summary, there is an overall rather marked
correlation between network size and modularity, but it mainly
arises because of the significantly lower modularity scores of
small-sized networks. Interestingly, no significant correlation
was observed between bacterial growth rate (24) and modularity
(r � �0.0842, P � 0.3796) despite the fact that network size is
positively correlated with a faster growth rate (r � 0.3570, P �
1.25�10�4).

It is instructive to examine some of the outliers marked by an
asterisk in Fig. 3a; specifically, a few species of Rickettsia and
Borrelia have very small networks but high modularity scores.
Although genetically very remote, these species have a shared
lifestyle—they are obligate mammalian pathogens that are trans-
mitted by parasitic insects such as fleas or ticks. This intricate life
cycle requires a rapid and efficient shift between two very
different environments, which probably dictated the emergence
of niche-specific metabolic subsystems, increasing modularity.

Fig. 2. Standard deviations for modularity scores of the Proteobacteria at
varying taxonomic levels: (i) Salmonella (strains of the same species); (ii)
Blochmannia (species); (iii) Enterobacteriaceae (family); (iv) Gammapro-
teobacteria (class); (v) Proteobacteria (phylum). The variation in modularity
increases gradually when extending the distance from strains of the same
species to the phylum level.

Fig. 3. Modularity scores vs. network size. (a) Modularity vs. network size.
Network size is measured as the number of enzymes in the network. The
outliers noted by * represent very small networks that yet have high modu-
larity scores, and the ones noted by � represent large networks that have low
modularity scores. The solid line represents the linear regression curve, mark-
ing the correlation between modularity and network size. (b) Mean modu-
larity and standard deviation as a function of network size. Each bin contains
a similar number of networks (n � 54), with bin #1 including the smallest
networks and bin #6 including the largest ones. The smallest networks (bin #1)
have significantly smaller modularity scores than the networks in all other
bins. (Wilcoxon rank sum test P values for bins 2–6 are 3.92�10�4, 2.55�10�6,
3.34�10�6, 1.37�10�7, and 1.76�10�8, correspondingly).
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This may be an extreme example of the principle laid out by ref.
19, that environmental diversity promotes network modularity.
Conversely, we could not find any evident common link between
the outlier organisms with low modularity scores and large
networks such as, e.g., the bioremediation agent Dechloromonas
aromatica and the antibiotic producing Streptomyces avermitilis
(marked by a plus sign in Fig. 3a).

After these specific observations, we examined the overall
correlation between modularity and various environmental
properties in our dataset. A recent study (20) has explored the
link between modularity and environmental diversity, focusing
on one environmental property (habitat diversity) in a smaller
number of networks. The analysis of ref. 20 has relied on
assignment of discrete environmental diversity scores to differ-
ent habitats. Here, we take a different approach, analyzing
different subsets of bacteria that are grouped by common habitat
features (Methods). Comparisons of several habitat groups shows
a statistically significant difference in their modularity scores
(employing a Wilcoxon ranked-sum test). Evidently, host-
associated bacteria have significantly lower modularity values
than organisms in multiple (P � 0.00064), aquatic (P � 0.001),
and terrestrial (P � 0.0067) environments, corresponding to the
findings of ref. 20 that obligate host-associated organisms have
the lowest modularity scores. This trend is probably due to the
lifestyle of many of these organisms (best exemplified by the
mycoplasmas)—dependence on a multitude of host-derived
metabolites in different pathways, which results in smaller
networks with overall lower modularity.

Interestingly, among the host-associated organisms, endosymbi-
onts have miniscule metabolic networks (average size of 157
enzymes with mean modularity 0.8688 and SD 0.0353) but these
networks are slightly more modular than those of commensals and
pathogens (average size of 212 enzymes with mean modularity
0.8663 and SD 0.0177), which are more metabolically versatile
(although this difference is not statistically significant). Further-
more, we find that thermophilic bacteria have significantly higher
modularity scores than organisms in either mesophilic (P � 0.0495)
or hyperthermophilic (P � 0.0464) environments, and facultative
bacteria have lower modularity scores than aerobic bacteria (P �
0.0028) (after correcting for multiple hypotheses testing using the
Bonferroni correction). However, the evolutionary forces that have
shaped these differences remain unclear. Finally, we note that the
genomic fraction of transporters and permeases, which may have
been putatively thought to constitute a simple rough correlate of
environmental diversity, does not manifest a significant correlation
with network modularity.

We next examine the evolution of modularity since the last
universal common ancestors of bacteria, by reconstructing the
ancestral metabolic networks of the species that appear in the
tree of life of (21) (Fig. 1) and computing their modularity scores
(Methods). There is a significant negative correlation between
the modularity scores of the ancestral networks and their
distance from the root of the tree (�0.212, P � 0.0129, Spear-
man correlation test). Including the extant species (the leaves of
the tree) in the test, results in a correlation of �0.196126 (P �
0.001). This overall trend, where ancestral modularity scores
tend to be higher than those of the descendants, may be
attributed to speciation and niche specialization of the organism
and to the gradual addition of more peripheral metabolic
pathways during evolution (25, 26). Indeed, the latter process of
incremental, peripheral evolution is likely to decrease overall
network modularity, as evident from the positive correlation
between network centrality and modularity shown earlier.

An additional important force that has been assumed to effect
the emergence of modularity in metabolic networks is HGT.
HGT refers to several biological mechanisms by which one
organism may transfer genetic material to another organism that
is not its descendant and is a major evolutionary force in

prokaryotes (27, 28). Accordingly, it has been hypothesized that
HGT accelerates gene clustering and thus may potentially
contribute to (and benefit from) network modularity (16). We
explored the relationship between the extent of HGT and
modularity using the data in ref. 29, which specifies the propor-
tion of horizontally transferred genes in various organisms. The
Spearman rank-correlation test between the extent of HGT and
modularity in the 94 organisms that are included both in our
dataset and in that of ref. 29 yields a correlation of r � 0.2863
(P � 0.0052). Taking into consideration that many transferred
genes encode for cell-surface components and proteins of un-
known function (29) that are clearly not represented in the
metabolic network and that newly arrived genes may take time
to adapt and integrate into existing networks (30), the magnitude
of this correlation is indeed remarkable.

Discussion
Analyzing the modularity of metabolic networks of hundreds of
bacterial species, we find that it is moderately concordant with
organismal phylogeny along the tree of life. We also find that
network size is a strong determinant of metabolic network
modularity. Accordingly, endosymbiotic organisms that tend to
have smaller networks have lower modularity scores than non-
symbiotic organisms. The modularity values of pathogens and
commensals are generally as low or lower than those of endo-
symbionts. However, obligate mammalian pathogens that are
transmitted by parasitic insect vectors provide a telling excep-
tion, having small networks but high modularity scores. Al-
though some studies have found no evidence that varying
environments are required for the evolution of modularity (31),
our findings support the notion put forward by refs. 18–20 that
the need to accommodate for different niches markedly en-
hances the evolution of modularity. An additional important
force in the evolution of modularity is HGT, because the fraction
of overall horizontally transferred genes is shown to significantly
correlate with modularity scores across species, in congruence
with the selfish-operon theory (16). Finally, examining the
evolution of modularity across the a tree of life reveals a trend
of decreasing modularity scores from ancestors to their descen-
dants, which may result from niche specialization and the
addition of peripheral metabolic pathways. This complex mix-
ture of driving forces reinforces the notion that modularity can
be thought of as a product of both the organism’s past evolu-
tionary heritage and its present adaptation to a certain lifestyle
and to available niches. The determination of whether modu-
larity is a converging vs. a genetic trait remains an open
challenge.

Obviously, one should acknowledge that a study of the kind
presented here suffers from a few methodological limitations.
Primarily, the large scale KEGG data used is not free from noise
and missing information, and the representation used lacks
reactions’ directionality, stoichiometry and more. However, the
large scope of the data used permits a very large-scale investi-
gation across hundreds of networks and leads to the identifica-
tion of general relations that run across the data. Another
potential concern may arise from the disconnected nature of the
analyzed networks, a property that could affect modularity-score
estimation to some extent. To this end, we repeated the analysis
presented here while randomly connecting each network’s com-
ponents to form its closely connected analog, confirming the
results reported in this article (see SI Text for details). Future
studies could extend the approach presented here to investigate
the modularity of metabolic networks of Archaebacteria and
Eukarya to obtain a more comprehensive view of their evolution.
As they become available for many species, it will be telling to
explore the modularities of other kinds of biological networks
like protein–protein interaction networks on an evolutionary
scale. It remains to be seen whether the forces identified here in
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bacterial metabolic networks do play a similar or a different role
in the evolution of modularity in other kinds of biological
networks.

Methods
Construction of Species-Specific Metabolic Networks. We constructed the
metabolic networks of 325 bacterial organisms following the approach out-
lined in (32). Metabolic data were collected from KEGG (release 39, September
2006, ftp://ftp.genome.jp/pub/kegg). Parsing KEGG reactions, compounds and
enzymes’ data, we created a list of the existing reactions in each species in our
collection, their products and substrates, and their directionality. Water,
protons, and electron components were removed from the networks as in ref.
33. Highly connected metabolites that participate in �10 reactions were also
removed, and reactions that have one of these compounds as their sole
product or substrate were subsequently removed (analogous to the procedure
used in ref. 34). A mapping associating metabolic enzymes to the reactions
they catalyze was generated, based on the information in the KEGG database.

The metabolic network of each organism was generated from its list of
reactions as follows: Each enzyme is represented as a node in the network. Let
E1 � {e1

1, e2
1, . . . , en

1} denote the set of enzymes that catalyze reaction R1, and
E2 � {e1

2, e2
2, . . . , em

2 } denote the set of enzymes that catalyze reaction R2. If a
product of R1 is a substrate of R2, then edges are assigned between all nodes
of E1 and all nodes of E2. Edges are also assigned within E1 nodes and within
E2 nodes. Edges in the network are considered undirected. For each network,
we computed the ratio between the number of metabolic enzymes and the
overall number of genes in the genome of the pertaining species. Networks
for which this ratio was �0.05 were considered as lacking sufficient data and
were omitted from our analysis (overall 12 networks were filtered out, result-
ing in a total of 325 metabolic networks).

Identifying Topological Features of the Network. For each metabolic network,
we computed the network centrality measure and the mean degree of its
nodes. A network’s centrality is computed as follows: All pairwise shortest
paths were determined, using the Floyd–Warshall algorithm (35), and for each
node, its mean shortest-path distance to all other nodes in the network was
computed, denoting the node’s centrality. In cases where the network has
more than one connected component, nodes from two different components
are assumed to have a distance of twice the maximal distance obtained within
the components. The node with the smallest mean shortest distance is con-
sidered the most central node, and its mean distance is defined as the
network’s centrality.

Computing Network Modularity. The modularity score of each metabolic
network is computed by using the algorithm presented in ref. 23. New-
man’s algorithm partitions the network into modules such that the number
of edges between modules is significantly less than expected by chance.
The algorithm provides a mathematical measure for modularity with net-
work-size normalized values, ranging from 0 (low modularity) to 1 (max-
imum modularity). The use of Newman’s algorithm provides a size-

invariant modularity measure and thus enables us to study the role of
network size on modularity as an independent, interesting topological
variable [this is different from Parter et al. (20), which used a modified
measure and examined equal size networks].

Characterizing Bacterial Environments. We first used the number of transporter
genes in a species’ genome as a rough correlate of the diversity of the
environment in which it resides. The number of transporter genes was com-
puted by counting the number of appearances of the words ‘‘transporter’’ and
‘‘permease’’ in the pertinent .ent file of each organism in the KEGG database,
describing the organism’s genomic data: gene numbers, names, functional
description, orthology, position, etc. A second, more refined characterization
of the environment of each species was obtained from the prokaryotic at-
tributes table of the National Center for Biotechnology Information Genome
Project (www.ncbi.nlm.nih.gov/genomes/lproks.cgi). For each organism, we
obtained four features: salinity, oxygen requirements, habitat, and temper-
ature range. Each of these features is defined by discrete categories as follows:
salinity: nonhalophilic, mesophilic, moderate halophile, or extreme halophile;
oxygen requirements: aerobic, microaerophilic, facultative, or anaerobic;
temperature range: cryophilic, psychrophilic, mesophilic, thermophilic, or
hyper thermophilic; habitat: host-associated, aquatic, terrestrial, specialized,
or multiple. This four-feature description of each organism’s environment was
then used to search for specific environmental characteristics that may influ-
ence metabolic modularity.

Phylogenetic Analysis and Reconstruction of Ancestral Metabolic Networks. The
tree of life generated in ref. 21 was used to identify the phylogenetic relations
between the species studied in our analysis and for inferring ancestral meta-
bolic networks along the tree. This tree includes a relatively large number of
species, covering most of the taxonomic groups for which metabolic data are
available. Specifically, this tree was used to measure the distance of each
extant and ancestral species to the last universal common ancestors of bacteria
and to calculate the species pairwise phylogenetic distances (measured as the
sum of distances from the two species to their last common ancestor). The
phylogenetic reconstruction part of our analysis was restricted to bacterial
species that could be matched to those included in the reference tree, result-
ing in a total of 138 species. Using the presence/absence pattern of each
enzyme across extant species and employing Fitch’s small-parsimony algo-
rithm to determine the presence/absence of each enzyme in every internal
node (36), the ancestral metabolic networks (corresponding to internal nodes
in the tree) were reconstructed.
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